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Abstract—A development is presented which serves to characterize the nature of an optimum finite-element
idealization. It is shown, utilizing the displacement formulation, that a true minimum of the system potential
energy must consider the idealization geometry as a primary parameter. As a consequence, two optimization
equations result, one the usual equilibrium equation and the other a residual equation involving gradients of
the stiffness matrix and load vector resulting from changes in the idealization. A technique for determining the
optimum solution is described and is applied to an elementary two-dimensional example. Practical recommenda-
tions are given based on an examination of the residuals associated with the optimization process.

1. INTRODUCTION

As sHOWN by Melosh [1], the finite-element technique can be cast into the framework of
an extremum principle by formulating the potential energy of the system under investi-
-gation. Such a formulation not only allows the examination of the system in its most
elementary form, but also allows, as indicated by Carroll [2] and Marcal [3], the inclusion
of the geometry of the idealization as unknown parameters. In this section the necessary
arguments will be given for including the idealization geometry as unknowns in the prob-
lem. The formulation will be limited to linear elastic materials, but it seems reasonable
that similar statements will be valid for more general cases of material behavior.

To introduce the concept of including the idealization geometry as a variable in the
potential energy, it is necessary to examine how the element stiffness matrix is formed.
This matrix is given in local coordinates by the expression

K] = fo fo f [B](D)(B] d¢ dn d{ (L1)

where the limits of integration I, represent the lengths of the element in the three local
coordinate directions as shown in Fig. 1. Thus, it becomes apparent that the stiffness
matrix is dependent on all of these lengths.

t This research has been sponsored by the Department of Defense, U.S. Army, Contract No. DAA-F07-69-C-
044 with Watervliet Arsenal, Watervliet, N.Y.
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FIG. 1. Idealization geometry for single element in local coordinate system.

For clarity and convenience the local &, 5, { coordinates will now be chosen to coincide
with the global x, y, z coordinates. Examining Fig. 2 which corresponds to a subdivided
continuum, it can be seen that each element will have associated with it a set of lengths
descriptive of its overall geometry. It can also be seen that the assembled global stiffness
matrix [K] is also dependent on all of these parameters. For the subdivision depicted in
Fig. 2, the total stiffness matrix [K] should be written as a function of the idealization
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FiG. 2. Idealization geometry for assemnbled elements in global coordinate system.
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parameters of the individual elements, i.e.,

Zl [K]* = [K] = [K(})] (1.2)

where N = total number of elements.
In addition, a similar argument applies to the construction of the global load vector
{P}. The expression for the local load vector is given as

Ve se
({P}E)T=f {Pb}T[N]dv+f {P)T[N]ds (13)

and is dependent on the limits of integration which define the volume and surface on
which the body and surface forces act. The global load vector is formed by summing up
the local values and is, therefore, also dependent on all of the lengths of the elements, i.e.,

N
Y, (P})T = {P}" = {PUJ}". (1.4)
e=1
The above arguments, whether applied to the simple rectangular geometry used in
Fig. 2 or a more general curvilinear coordinate system, still apply. The net effect is the
recognition that the potential energy, in addition to being a function of the unknown
global displacement vector u;, must also be considered as a function of idealization
geometry, ie.,

n = n(u;, 1) (1.5)

To produce a true minimum on (1.5), necessitates not only considering the equilibrium
equation,

on/ou; = K;u; — P, =0 (1.6)
but also the following additional equation in /,,

on |, 0K, 0P
NGRS Vytuiel’ Pall Py 1.
3L, SU; 3L, u; alku, r.=0 (L.7)

subject to the dimensionality constraint that the sum of the [,’s in any one coordinate
direction must equal the overall length of the assembled structure in that direction. The
vector r, in (1.7) will be referred to as the residue or residual vector.

It should be mentioned that idealization parameters, /., need not be characterized by
a measure of length and that other schemes for labeling these parameters can be used.
Perhaps the independent idealization parameters might be more favorably cast into
measures of angle and radius as in shell and axisymmetric applications. As long as the
necessary relationships between the global stiffness matrix, load vector, and the parameters
can be defined, this option is available.

2. OPTIMUM FINITE-ELEMENT FORMULATION

In order to prove that by satisfying (1.6) and (1.7) a true minimum is obtained for the
total potential energy, the monotonic convergence property of the finite-element method
may be employed. A complete discussion of this property is given by Melosh [1] and also
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by Key [4]. They indicate the necessary and sufficient conditions which the shape functions
must satisfy in order to insure monotonic convergence. Furthermore, they demonstrate
that the element used in this paper satisfies the criteria that insures this behavior for
successive refinements of the idealization geometry.

In the context of the finite-element method, a refinement of the initial geometry results
in a larger number of smaller regions having the same shape as the initial region. Changing
element geometry, such as dividing an initially rectangular region into a triangular one,
is not an admissible refinement. Acceptable refinements are illustrated in Fig. 3 by dashed
lines which indicate the manner in which initial element geometry is maintained during
the subdivision process.

By keeping the element shape unchanged, it is possible for the displacements in the
refined region to be identical to those in the initial region, and therefore their total potential
energies can be identical. Since the minimum potential energy solution is selected for each
analysis, the refined region analysis cannot result in a higher total energy solution than
that of the initial region, i.e., the process must exhibit monotonic convergence [1].

Based on the above definition of a refinement and the assurance of monotonic con-
vergence, the following theorem is given:

Theorem
A necessary consequence of the following refinement sequence
T, 2 Tty 2 Tptz--- = Tpem- - 2 Texact {21)

where m represents successive refinements of the initial finite-element mesh #, is the exist-
ence of an optimum sub-division such that

er*’m(l:'k) < ﬂ:n*—m(li) (22)

where [¥’s designate the optimum mesh configuration.

FiG. 3. Admissible finite-element refinements.
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Proof

Consider the region shown in Fig. 4. Since the dashed line represents a refinement of
the initial idealization, whose potential energy will be designated =,, the following must
be true

Ty 2 Mpyy (2.3)

ie., the initial idealization constitutes an upper bound on potential energy. Since this
equation is in no way dependent upon the position of the refinement, it must hold for all
[, such that

T, > Meyy for 1, <1, <. 2.4
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FIiG. 4. Refined initial geometry.

¢

The following special cases must also be true if the potential energy is to be continuous
and not ill-defined :

Tpey — M, as I, -1 (2.5)
Rpey — N, as I, =15, {2.6)

From the extreme value theorem for a continuous function there must exist an absolute
minimum or absolute minimums of equal potential in the interval I, < I, < I; such that

Tpr 1y, 15, 13) < mpu (1, 15, 15) 27
for which
O 013l = 0. (28)

Reapplication of this scheme to successive refinements is possible and by an inductive
argument there must exist either a unique set of I¥’s or, for the worst case, multivalued
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but equivalent set of [¥’s such that
TemllF) < Ty mll) (29)
where
Oty s m/Olif1x = 0. (2.10)

As already indicated, the solution of equation (2.10) does not guarantee uniqueness.
However, it does guarantee the existence, if not unique, of some set of L;’s such that the
following is true

nn+m(l?‘) < nn+m(Li) < nn+m(1i) (211)
where
e /Ol = 0. (2.12)

Sufficiency is only possible if suitable precaution is exercised in the search routine to en-
sure detection of L;s that are not local maximums or points of inflection.

It should be emphasized that the above proof is general. although limited to the type
of subdivisions which satisfy equation (2.2). For problems in which the idealization param-
eter, I, is not as obvious as in the case of rectarigular geometry, additional consideration
must be given to the nature of the relationship between the “‘parent” element and its cor-
responding counterpart in the transformed space. For example, in using the isoparametric
element family the shape function would be used to generate the refined subdivision in
the transformed coordinate system.

For the corollaries that follow the existence of (2.11) is adequate. A comparison of
(2.12) with (1.7) and the original theorem reveals the following to be true:

Corollary 1. A necessary condition for a true minimum on potential energy and for
an optimum subdivision to exist for any fixed number of finite elements, in addition to the
satisfaction of the equilibrium equation (1.6), is the vanishing of the residual vector r,.

Corollary 2. A necessary condition for convergence to the exact solution of any finite-
element refinement sequence is the solution of the optimum subdivision geometry.

Corollary 3. The residual vector r, must identically vanish if the finite-element solution
is exact.

These corollaries will be useful in determining when a finite-element solution has
converged to the best possible solution for a given number of elements. Application of the
theorem and corollaries to an example problem will be given after a brief discussion of
the solution procedure is presented.

3. OUTLINE OF SOLUTION PROCEDURE

The solution of equations (1.6) and (1.7) developed in Section 2 cannot be carried out
explicitly due to the nonlinear manner in which the parameters /, enter into (1.7). In order
to satisfy both equations an iterative technique was adopted which consisted of four basic
steps. The main features of the solution are summarized in the flow chart of Fig. 5 and
outlined in the following paragraphs.

(1) A standard Gaussian elimination scheme is used to satisfy the equilibrium equation
(1.6) for an initial guess at the parameters /.. The input for this step was often an equidistant
spacing of elements but it could be any reasonable idealization geometry.
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F1G. 5. Solution procedure including idealization geometry.

(2) The residual vector r, remaining from (1.7) is determined utilizing the displacements
found from the above step. This procedure is easily performed from the computational
standpoint as the needed derivatives of the stiffness matrix are stored on a peripheral
device as the matrix K;; is being formed. In a like manner the formulation of the loading
vector derivative 0P,/0l, is obtained.

(3) A gradient search method is used for determining a new set of /,’s. The gradient
technique adopted was one by Fletcher and Reeves [5] which also includes a linear search
routine to speed convergence. This routine can be applied to the solution of determining
the unconstrained minimum of N variables. Although the selection of possible s is
limited by the dimensionality constraint, it was found that as long as the initial iteration
was started with [,’s defined by points in the problem subspace, few difficulties were
encountered.

(4) The residual vectors r, for each subsequent iteration are monitored until they fall
below some prescribed value or vanish. When they satisfy the given tolerance, the op-
timization routine is terminated and the final values of =, [, and r, are printed as a solution
to the problem.

4. ELEMENT SELECTION AND PROBLEM FORMULATION

Application of the idealization technique is now demonstrated for problems in which
the finite-element solution is performed by employing two dimensional elements. Numerical
examples are limited to application of the rectangular 8-DOF element shown in Fig. 6,
whose displacement function can be written in terms of the local coordinates as

Uy = o, &t odn+asntoy (4.1a)

u, = o5& +ogln+ogm+otg (4.1b)
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FiG. 6. Rectangular 8-DOF finite-element in local coordinates.

where ¢ and # are length measures in the local coordinate system and the o,’s are the
generalized coordinates. In these examples, for simplicity, the local coordinate system
designated &, #, { will be selected to coincide with the global x, y, z axes.

Primary in the selection of this element for the investigation was the explicit manner
in which the stiffness matrix K;; is expressible in terms of the idealization parameters,
I’s, and the ease with which K;; can be manipulated in order to arrive at a suitable sub-
stitution into equation (1.7). For detail on the manner in which the necessary relationships
are determined in order to arrive at a suitable substitution into equation (1.7), the reader
is referred to Carroll [2].

Referring to Figs. 7-9 the basic problem posed is to determine, given the number of
elements shown, the optimum arrangement of these elements to minimize the system
potential energy under the following loading conditions:

1. Cantilevered beam—concentrated end moment (Fig. 7)
2. Cantilevered beam-—concentrated shear load (Fig. 8)
3. Cantilevered beam—uniformly distributed load (Fig. 9).

These three loadings represent cases for which exact displacements require successively
higher powers in the coordinate x. It should be noted that for these initial results no
optimization was considered or found necessary in the global y-direction, due to the in-
herent symmetry of the problems under investigation. In all cases the y-residue vector was
calculated and found to be at a level associated with truncation error of the IBM 360 used.
For Load Case 3 the distributed load was applied at the neutral axis.

The output of this series is presented graphically in Figs. 7-9 and serves to indicate the
beam configuration before and after optimization, the potential energy at these two states,
and results for stresses and displacements. It can be seen from this series that more drastic
improvement in solution is possible as the mismatch becomes greater between the exact
solution displacements and the finite element piecewise linear representation.
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FiG. 7. Comparison of equidistant and optimum finite element
moment (2 x 3 mesh).
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solutions for concentrated end

For example, Load Case 1 has as its optimum idealization geometry the equidistant
assumed mesh. The exact displacements are of order x? and thus this load case represents
what will be termed a first order mismatch between exact solution displacements and the
finite element representation. Although this satisfies the Corollaries concerning con-
vergence given in the previous section, these are, of course, only necessary conditions and
it can be shown, by refining this mesh further, minimization is achieved. It has been the
author’s experience that the optimum idealization geometry is characterized by an equi-
distant mesh whenever a first order mismatch occurs.
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F1G. 8. Comparison of equidistant and optimum finite-element solutions for shear end load (2 x 3 mesh).
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F1G. 9. Comparison of equidistant and optimum finite-element solutions for uniform load (2 x 3 mesh).

This observation has practical implications concerning the manner in which com-
parison between elements having different displacement functions are performed.

The authors cite an example by Doherty et al. [6] in which they examined the same
series of problems presented in this paper. There a 10-DOF element, labeled Q5 utilizing
the displacement function and geometry shown in Fig. 10, was compared to the 8-DOF
generalized quadrilateral element, labeled Q4, also shown in the figure. For rectangular
boundaries the Q4 element reduces to the familiar 8DOF rectangular element used
throughout this section. Comparing the result presented in Table 2 from their analyses
reveals that when the QS5 element is compared with the optimum Q4 arrangement, labeled
0-Q4, only a marginal improvement is noted. Based on this argument there seems no
justification for concluding the QS5 element superior to the Q4 for this problem sequence.
Since the Q5 element results are, of course, non-optimum, it is difficult to determine which
element has the “potential” for determining the best solution. But it would appear that
from a solution standpoint, convergence studies directed at demonstrating the superiority
of improved elements based on identical mesh configurations need reevaluation.

In addition to these results, the summary given in Table 1 serves to indicate the effect
on computer time as more refined mesh configurations are employed. Here a balance
between economic considerations and solution improvement must be weighed. In general,
dramatic improvements in finite-element solution is possible for very coarse mesh con-
figurations with a reasonable increase in computer time. However, as mesh subdivisions
become finer, or as more elements are utilized in the discretization process, the adverse
effects of solving the non-linear equations that result from employing equation (1.7) be-
comes apparent. For these finer mesh configurations the actual magnitude of the im-
proved solution also becomes marginal and this suggests a monitoring of the residual
vectors, the largest of which is shown in this table, as an indication of when convergence
has been achieved.
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FiG. 10. Four and five node generalized quadrilateral elements.

TABLE 1. SUMMARY STATISTICS FOR SHEAR END LOAD CANTILEVERED BEAM

893

DOF Potential Tip O max Largest CPU Time
(Mesh) Idealization energy deflection (y = —1-0in) residue (relative)
12 Equidistant —7251 in-# 0-483 in 2150 psi 14.7
(2x3) Optimum —92.70 in- # 0-618 in 3550 psi < 0-0001 o
18 Equidistant —108.97 in- # 0-726 in 3250 psi 144
(2x5) Optimum —121-67 in-# 0-811 in 4150 psi < 0-0001 o
24 Equidistant —126-49 in-# 0-843 in 3800 psi 10-7
(2x7) Optimum — 13425 in-# 0-895 in 4300 psi < 0-0001 o
30 Equidistant —135-46 in-# 0-902 in 4050 psi 77 15
2x9) Optimum —140-54 in- # 0-936 in 4400 psi < 0-0001 ’

36 Equidistant —140-51 in- # 0-936 in 4400 psi 57 2.3
(2x11) Optimum —144-05 in-# 0960 in 4450 psi < 0:0001 ’
42 Equidistant —143-59 in- # 0-957 in 4500 psi 4-4 2.7
(2x13) Optimum —146-19 in- # 0-974 in 4500 psi <0-0001 ’
48 Equidistant —145-59 in- # 0-970 in 4500 psi 34 40
(2x15) Optimum —147-68 in- # 0-983 in 4500 psi < 0-0001

Theory —154-50 in- # 1.030 in 4500 psi
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TABLE 2. COMPARISON OF OPTIMUM FINITE-ELEMENT RESULTS WITH REF. [6]*

End moment—Displacements v at y = 0 (2 x S mesh)

X 2 4 6 8 10
Finite Q4 2-82 11-29 2541 4517 70-58
element Qs 302 12-10 27-24 48.43 7567
0-Q4 2-82 11-29 2541 4517 70-58
Theory 4.00 16-00 36-00 64-00 103-00

Shear load—Displacements v at y = 0(2 x 5 mesh)

x 2 4 6 8 10
Finite Q4 4.39 15-51 31-74 5134 72:65
element Q5 467 16-51 3392 54-90 7771
0-Q4 5-80 1890 38-80 59-40 81-11
Theory 620 22:00 45.00 77-80 103-00

Uniform load—Displacements v at y = 0(2 x 5 mesh)

x 2 4 6 8 10
Finite Q4 6-03 19-11 36-22 55-07 74-30
element Q5 6-38 2034 3864 58.82 7943
0-Q4 7-60 24.90 4560 66-10 86-00
Theory 842 26-88 50-88 7723 104-00

* All data based on E = 1500-0 psi.

5. CONCLUSIONS

In examining the results for the problems presented, a general overall improvement
in displacements is noted when comparison is made with exact behavior. Indeed, the
dependence on the mismatch between the finite-element displacement function and exact
displacements seems to suggest the displacement sensitivity of the discretization or ideal-
ization process for the displacement formulation.

Based on the numerical studies conducted, several aspects of the technique have
immediate application to the finite-element user:

1. For coarse mesh configurations the direct application of this technique is suggested.
Here, dramatic improvement in solution is available to the finite-element user with a
relatively small increase in computer time. This is expected to have appeal to the three-
dimensional finite-element investigator who often is limited, by virtue of available com-
puter storage, to a small number of large degree of freedom elements.

2. For fine mesh configurations for which the direct solution of the optimum geometry
is impractical, monitoring of both the potential energy and residual vector r, has been
shown to provide a clear indication of when convergence has been approached. Although
fine meshes preclude the justification of this technique, due primarily to economic con-
siderations, the necessary condition for convergence as given in Corollary (1) still remains.

3. Intuitive approaches often employed in the finite-element discretization process do
not adequately describe the manner in which refinements should be made. It is recom-
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mended that a “rule of thumb” based upon examining the residue vector r, would be more
accurate in directing further refinements.

4. Studies directed at demonstrating the superiority of an improved element based
on identical mesh configurations need to be reexamined in light of optimum mesh
configuration.

5. The question regarding uniqueness still remains. Although indications are that a
unique set of I;’s was found for each problem solved, there could be problems for which
several configurations do exist such that the residue vector r, will vanish for some non-
minimum set of /;’s.
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Ab6crpakT—/laeTcs pa3paboTka 3anaum ans u3odpaxeHns NPUPoabl ONTHMANbLHOM MAeaM3alMy KOHEYHOT O
IIEMEHTA. YKa3aHO, NOAB3YACh GOPMYJIAMH AJisl IEpEMELIEHMI, YTO TOYHOE MMHUMYM NOTEHLMAILHOMN
IHEPTUM CHCTEMBI IOJDKHO PACCMAaTPUBATh F€OMETPHIO MIEATH3aUMH, B KA4YECTBE NapaMeTpa, HMEIOLIEro
TePBOCTENIEHHOE 3Ha4eHue. B pedynbraTte, npoucXoasT ABa ypaBHEHUS ONTHMM3AUMM, NEepBO€ OOBLIKHOB-
€HHOE YDaBHEHWE PaBHOBECHSA WM APYro€ OCTATOYHOE YPaBHEHME, 3aK/IOYAOIEe IPaAMEHTHl MATPHLbI
K03PHUMEHTOB XECTKOCTH M BEKTOpP HArpPy3KH, BCIAEACTBHE M3MEHEHMH B Maeanu3auuu. OnuchiBaeTcs
METOA IS ONpeleNieHHs ONTHUMAalbHOTO pelleHHs M NPUMEHSETCA K PacueTy 3/€MEHTAPHOro, AByXpas-
MepHOTO pHMepa. JIaroTCs NONE3HBIE YKA3aHWA HA OCHOBE UCCAENOBAHKS BHIYETOB, CBA3aHHBIX C IPOLIECCOM
ONTHMHU3ALNH.



